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Abstract. Methods are described to incorporate solvent
reaction field effects into solute electronic structure
calculations. Included are several old and new approach-
es based on approximate solutions of Poisson’s equation
through boundary element methods, wherein the solu-
tions are represented in terms of certain apparent surface
charge or apparent surface dipole distributions. Practical
algorithms to set up and solve the requisite equations are
described and implemented in a new general reaction
field computer program. Illustrative computational
results are presented to show the performance of the
program.
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1 Introduction

Inclusion of a reaction field is becoming very popular in
electronic structure calculations as a convenient means
to represent important electrostatic effects of a solvent
on solute properties [1, 2]. The present work describes
and documents practical algorithms implemented in a
new computer program for determining the reaction
field. A concise treatment of the most immediately
relevant literature is given in Ref. [3], to which we also
refer for most details of the theory. Through use of
boundary element methods, the solutions are expressed
in terms of either apparent surface charge or apparent
surface dipole distributions. Details are given here on
the construction and solution of the relevant equations
to determine these distributions by finite matrix
manipulations. The computer program described in this
work to implement these procedures is a separate
module interfaced with the standard electronic structure
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HONDO package [4]. Computational results are pre-
sented to illustrate the performance and precision of the
program.

The very simple model of solvation considered here
represents the solvent as a linear isotropic homogeneous
continuum characterized by its static bulk dielectric
constant. A cavity that strictly excludes solvent is carved
out of the continuum to hold the solute. The solute
polarizes the solvent to produce an equilibrium reaction
field that is specified by Poisson’s equation together with
appropriate boundary conditions. Solution of this
equation provides an electrostatic reaction potential,
from which an effective solute—solvent potential-energy
expression can be immediately obtained and included in
the Hamiltonian operator used for electronic structure
calculation on the solute. It is emphasized that this
simple model only treats the long-range electrostatic part
of the solute—solvent interaction. While this is often the
dominant effect in polar solution, it should be recog-
nized that many other important solute—solvent
interactions also exist [1, 2] that lie outside the scope of
the present work.

Unconstrained quantum mechanical calculation of
solute electronic structure inevitably leads to a tail of the
wave function penetrating outside the cavity that nomi-
nally encloses the solute. Exact solution of Poisson’s
equation to include the effects of this charge penetration
requires use of an apparent volume charge density [35, 6, 7]
lying outside the cavity in addition to the commonly used
apparent surface charge density lying on the cavity sur-
face. This representation of the complete reaction field
solution has previously been implemented [8, 9, 10, 11]
through the method here denoted SVPE, but exact
treatment of the volume polarization is difficult and
demanding.

The present work focuses on simpler methods that
provide approximate solutions of Poisson’s equation by
representing the reaction field using only certain appar-
ent surface distributions. Considered here are the
previously developed SS(V)PE [7, 8, 11, 12, 13, 14, 15],
IEF [16, 17, 18, 19], and COSMO [20, 21, 22, 23, 24, 25,
26, 27] methods that each provide an approximate



representation of volume polarization effects in terms of
apparent surface charge distributions. For comparison,
we further consider the large group of most other extant
apparent surface charge methods that simply neglect
volume polarization, which we collectively classify [3]
under the name SPE. Also considered here are analo-
gous new methods [3] called SS(V)PE—u, IEF—u, COS-
MO—u, and SPE—u that instead each use an apparent
surface dipole distribution to represent the reaction field.

It is shown in Sect. 2 how the formal equations that
are fully described in Ref. [3] can be discretized over a
grid of points on the cavity surface to allow solution by
finite matrix methods. Practical details of how the cavity
surface is actually constructed and represented in our
computer program are provided in Sect. 3. Details of
how the reaction field program is interfaced to a stan-
dard electronic structure package [4] are given in Sect. 4.
The numerical performance of the program in repre-
sentative applications is considered in Sect. 5. A brief
summary of the work and the major findings are re-
viewed in Sect. 6. Detailed derivation of a shape factor
useful to improve the matrix representations of several
of the methods considered is given in the Appendix. A
comparison of the accuracy of these various approxi-
mate methods is provided in Ref. [3].

2 Solution of reaction field equations

In this section we discuss how the formal equations
described in Ref. [3] are discretized to allow their
approximate solution using matrix methods. This natu-
rally requires certain information about the cavity
surface. In particular, it is necessary to know the
locations of a set of N grid points, {t;}, that implicitly
represent the actual continuous surface I', the amount
of surrounding surface area, a;, that each grid point
represents, and the unit vector, n;, along the outward-
directed normal to the surface at each grid point. In
cases where the surface is not spherical about the
expansion center (or a strict union of spheres about a
set of expansion centers) it is also useful to know the
acute angle, y,, between n; and the vector to the grid
point t; from its associated expansion center.

There are many ways in practice to define the cavity
surface, each leading to different sets of the quantities t;,
a;, n;, and y;. The way these items are used during so-
lution of the reaction field equations is more or less in-
dependent of how they are obtained, so for purposes of
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the present section we simply take them as given quan-
tities. Full details of the particular methods available in
our program to construct the cavity are given in the
following section.

In the SS(V)PE, IEF, COSMO, and SPE methods a
system equation of the generic form /# a(t) = #(t) must
be solved to obtain the surface charge density, o(t),
where " is the system operator that depends on the
cavity construction and #(t) is a linear function of the
electrostatic potential, ®”(t), and/or normal electric
field, F*(t), generated by the solute at the cavity surface.
The different approximate surface charge methods are
effectively specified [3] by different operators # and
functions #(t).

The basic assumption behind the discretization pro-
cedure is that a(t), ®°(t), and F?(t) vary slowly over the
cavity surface so that across any small segment of sur-
face area a; each can be taken as essentially constant at
its value for the representative point t; in this area. The
total charge on this segment of area can therefore be
approximated by ¢; = a;6(t;). The generic system equa-
tion noted earlier is then approximated on the surface
grid by a finite matrix equation of the form

Kq=y ,

where the matrix elements K;; of the system matrix K
represent in some sense the integrand of the integral
operator %", and elements of the right-hand side (RHS)
column vector y are given by y; = #(t;). Expressions for
K and y are given in Table 1 for each of the approximate
surface charge methods considered in this work. These
expressions are given in terms of more elementary
constitutive matrices and vectors that are discussed in
full detail later.

Similarly, in the SS(V)PE—u, IEF—u, COSMO—-yu, and
SPE—u methods a system equation of the generic form
ZLu(t) = Z(t) must be solved for the surface dipole
density u(t). Assuming that u(t) varies only slowly over
the surface we can approximate the total dipole on
any small segment of surface area by p; = a;u(t;). The
different approximate surface dipole methods are effec-
tively specified [3] by different operators ¥ and func-
tions Z'(t). In this case the generic system equation is
approximated on the surface grid by a finite matrix
equation of the form

Lp=z,

where the matrix elements L;; of the system matrix L
represent in some sense the integrand of the integral

Table 1. Matrices and column
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operator %, and elements of the RHS column vector z
are given by z; = Z(t;). Expressions for L and z are
given in Table 2 for each of the approximate surface
dipole methods considered in this work.

It remains only to specifically define the matrix
elements and vectors corresponding to each of the
elementary quantities involved in Tables 1 and 2. For
example, the electrostatic potential generated by the
solute charge density, p(r), at the various grid points is
denoted by the column vector v# collecting the elements
v’ = ®(t;), and the corresponding normal electric field
is denoted by the column vector f collecting the
elements f/ = FF(t;).

The integrand of the unit operator .# is simply rep-
resented by the diagonal unit matrix I, and the diagonal
matrix A has the surface area elements a; on the diago-
nal. Some care must be taken with diagonal elements of
the matrices S, D, and D* that respectively represent the
integral operators &, &, and 2", which are fully defined
in Ref. [3], because of the singularities in their integ-
rands. These singularities are weak and integrable. Thus,
the diagonal matrix element shown here for these ma-
trices does not strictly represent the integrand itself, but
rather its value averaged over the segment of surface
concerned, as obtained by integrating it over the surface
segment and dividing the result by the area of this
surface segment.

The integrand of the integral operator & is repre-
sented by the matrix D having elements

D — —(2n+ > 4 Dwa)/a;  fori=j
Tl (- t)/ It -t foris)

and Z* is represented by the transpose matrix D* = DT,
The expression used here for the diagonal elements was
derived previously [28] and has also been used in other
work [8, 29].

The integrand of the integral operator % is repre-
sented by the matrix S having elements

S — Csvanaf(y;) fori=j
YL - ] foris#j’

in which the diagonal elements require some comment.
The factor /4ma; has been derived before [12, 20] and
shown to give the exact result for a spherical surface [12,
20] and for a planar surface segment tangent to the
surface normal [12], i.e., a segment for which the angle
y; = 0. The empirical constant Cs; was determined to

have the value 1.07 for surfaces of the kind described in
the original COSMO work [20] and the value 1.104 for
surfaces described through Lebedev integration schemes
[12]. Further investigation verifying the latter optimum
value of Cs for Lebedev schemes is presented later in this
work. The additional shape factor f(y;,) (not to be
confused with the solute electric field that has a similar
symbol in this work) is new. As shown in detail in the
Appendix, it is derived to make the result exact for any
small segment of surface area for which the angle y; is
nonzero. Specifically it is found that

fG) = (%)K (sin®y;)/Cos 7,

with K being the complete elliptic integral of the first
kind (not to be confused with the system matrix that has
a similar symbol in this work). The shape factor f(y;)
becomes unity when y; is zero and remains numerically
very close to unity for small y;, so is practically irrelevant
on a spherical or approximately spherical surface.
However, it provides a significant improvement for
severely nonspherical surfaces that contain some large
values of the angle v,.

Two options are available to solve systems of simul-
taneous linear equations of the generic form Kq=y.
Completely analogous comments apply to the generic
Lp=z equation, so henceforth we will explicitly refer
only to the former equation. These options are based on
slightly modified versions of standard routines available
in the literature [30]. The first option calls the routine
LUDCMP [30], which utilizes LU decomposition. This
approach is relatively slow, but seems to be quite sure in
providing a solution to near full machine precision in
O(N?) steps. This option is available only if the entire
computation can be carried out in fast memory.

The generally faster second option to solve the si-
multaneous linear equations is based on the routine
SPARSE [30], which utilizes conjugate gradient itera-
tions. This option can be used even with matrices so
large that external disk storage is required to hold the
matrix K. The convergence parameter EPS in this rou-
tine is set to a default value of 1 x 10~7, which we have
found generally leads to a final energy that is good to
nearly full machine double precision (15S). If desired,
the user can reduce the value of this convergence pa-
rameter to gain speed, at the cost of some sacrifice in the
precision of the result. With dense matrices, such as

Table 2. Matrices and column
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typically encountered in the present context, the time
required for conjugate gradient iterative solution also
seems to grow roughly as O(N?), but with a more
favorable coefficient than for the LU decomposition
strategy.

The original SPARSE [30] routine calls the subrou-
tine ASUB, which computes the matrix vector product
Kx, where x is the current estimate of the solution vector
q, and also CdllS the subroutine ATSUB, which similarly
computes K'x. For methods that involve a symmetric
system matrix so that K = KT, we appropriately modi-
fied the routine to remove all calls to ATSUB with calls
instead to ASUB. For methods that involve a nonsym-
metric system matrix we explicitly form the transpose
matrix KT, provided that it can also be held in fast
memory, in order to minimize paging while forming the
matrix vector product.

With the SS(V)PE and IEF methods, the default used
to construct the system matrix corresponds to the sym-
metric operator listed for the SS(V)PE method in the
main body of Table 1. Any of the other nonsymmetric
forms noted in Table 1 can be optionally selected by the
user. For large nonsymmetric matrix systems solved by
conjugate gradient iterations it may happen that the two
matrices K and KT do not both fit into fast memory, thus
incurring a considerable performance penalty, whereas
choosing instead the symmetric form of the system ma-
trix would allow the entire computation to be carried out
in fast memory.

When formulated as just described the SS(V)PE and
IEF surface charge methods, as well as the IEF—u and
SPE—u surface dipole methods, require a matrix multi-
plication of O(N?) for construction of the system matrix.
This allows subsequent solution of the system equation
in one stage. For very large number of surface points
such multiplication may be very inefficient, or even not
possible to carry out in fast memory. For this situation
an alternative two-stage procedure is available that
eliminates the matrix multiplication, at the expense of
requiring solution of two system equations instead of just
one. The default is to allow the program itself to decide
whether to use the one-stage or two-stage approach.

The two-stage approach takes advantage of the fac-
torized forms of the relevant operators that are noted
in the footnotes to Tables 1 and 2. For example, one
alternative expression of the SS(V)PE matrix equation
takes the form

e—1\ 1
I— DA |Sq>5)
{ <6+1>2n }q

e—1 1
- I—— DA v .
<e+1>< on >V

Solution of this equation can be separated into two
stages, the first stage solving

() andom
(e
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to obtain the intermediate quantity vSS(V)PE  whose
elements represent the SS(V)PE reaction potential at
the surface (integrated over the surface segment areas),
and the second stage then solving the COSMO-like
equation
SqSS(VIPE _ (SS(V)PE
to finally obtain ¢3S(V)’E. Optionally, a two-stage
solution based on the other alternative factorized form
of the relevant operator, as noted in the footnote to
Table 1, can be selected. In the latter case, solution of the
first stage produces a temporarily expedient but non-
physical intermediate quantity. With either the SS(V)PE
or IEF method, slightly different discretization errors
may result from these different solution strategies in
practice because of their use of different forms of the
system matrix. With either the IEF—u or the SPE—u
method, which also involve matrix products, these
various solution strategies will all lead to the same
results in practice because there the matrices involved
commute with one another.

3 Cavity definition

In principle, a wide latitude is allowed for defining the
cavity surface I'. This is kept as a separate independent
section of code as much as possible to provide maximum
flexibility in including future alternatives and refine-
ments. Two cavity constructions are currently available
in the program. The first and simplest is a sphere having
the center and the radius defined by the user. The second
is an isodensity surface, i.e., a contour of constant solute
electronic density whose value, p, is defined by the user.
The isodensity prescription [29, 31, 32, 33] is known
to closely mimic the actual shape of a molecular solute.
In view of previous studies [9, 10] to determine the
optimum value in neutral solutes, the default is chosen
to be p, = 0.00le/a} in the program.

3.1 Surface grids

At present, only a single-center approach is available in
the program for the construction of an isodensity
surface. The strategy of using a single-center expansion
has been described and used previously [8, 29]. If the
cavity is substantially nonspherical this can limit the
accuracy of the necessary surface integrations, and in
extreme cases can fail to yield a satisfactory surface. The
user first selects an origin for the cavity. The default is
the center of nuclear change. Other options include the
center of nuclear mass, the midpoint of the outermost
atoms, the midpoint of the outermost non-hydrogen
atoms, and finally arbitrary user-specified (x,y,z) coor-
dinates.

The user is also allowed to specify an overall rota-
tion of the Cartesian axes of the integration grid. The
default is rotation to coincide with the principal
moments of nuclear charge. Other options allow
rotation to coincide with the principal moments of
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nuclear mass, and rotation through arbitrary user-
specified Euler angles.

Two methods are available for selecting grid points
on the surface. Both start by defining points on an initial
unit sphere centered at the cavity origin. In the first
method, the total number of points is Npy = NoNy,
where the user selects the two integers Ny and Ny that
define the number of points in the two angular coordi-
nates of a spherical polar coordinate system. Thus, the
dimension in latitude 60 is divided into A = n/Ny equal
increments, and the dimension in longitude ¢ is divided
into A¢ =2n/Ny equal increments. The initial unit
sphere weight of a point i is then the area w; =
sin ;A0A¢ of the corresponding surface element. The
default values are Ny = 8 and Ny = 16. If the solute has a
point group symmetry of Dy, or any of its subgroups,
the user should choose Ny to be a multiple of 2 and Ny to
be a multiple of 4 to ensure that the solvation code
maintains the desired symmetry.

The second method available for selecting surface
points corresponds to the Lebedev [34] schemes, which
are designed to numerically integrate exactly as many
spherical harmonics as possible on a unit sphere. We
incorporated the code developed by Dmitri N. Laikov
and Christoph van Wuellen, as distributed on the inter-
net through the Computational Chemistry List [35].
Users of this code are asked to include Ref. [34] in their
publications. The user simply specifies a number, Ny}, of
Lebedev points and the code returns the corresponding
positions and weights of that number of points on a unit
sphere. Possible choices for Ny, are 6, 14, 26, 38, 50, 86,
110, 146, 170, 194, 302, 350, 434, 590, 770, 974, 1202,
1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334,
4802, 5294, or 5810. These all have octahedral symmetry
and so are compatible with solutes having a point group
symmetry of Dy, or any of its subgroups. The original
code also has entries for Npg, of 74, 230, and 266 but we
disabled those three sets in our code because they each
contain some points having negative weights, which
precludes the physical association of weights with surface
areas. Users are also warned to be wary of the sets having
Nyrep of 146, 170, 350, 4802, and 5294, especially the 350
set. In some studies of convergence behavior (see later)
we found that these five sets give results that deviate
significantly from otherwise smooth plots of the depen-
dence of the solvation energy on Np.p, in those methods
that involve S in the system matrix. The default in our
program is N ¢, = 1202, which for most purposes is more
than adequate for small solutes such as those studied in
this work, but may be inadequate for very large and/or
irregularly shaped solutes.

3.2 Single center cavity construction

To actually locate each grid point, t;, the ray is followed
that emanates from the cavity origin in the direction of
point i on the initial unit sphere, extending until the
target surface I' is reached. For a spherical cavity this
just means extending the ray to have the length of the
given radius. For an isodensity cavity a search is made

along each ray until a point is found having a calculated
solute electronic density essentially equal to the target
value, p,, specified by the user.

The search for the isodensity point along each ray is
an iterative procedure, working inward after starting
from a point in the direction of the ray on a large sphere
whose radius is the distance from the cavity origin to the
furthermost nucleus, plus an additional 2aqy for good
measure. Both the solute density and radial density de-
rivative are determined at the current search point. By
default the radial density derivative is determined by
projecting the desired radial component of the analytic
Cartesian derivatives of the density, but the user can
optionally determine it instead from a finite-difference
approximation involving the current and the most recent
previous point on the ray. It is known [36] that in the
vicinity of the target value the radial dependence of the
solute density in any particular direction can be closely
approximated by a single exponential, ffexp(—ar), even
when using relatively small Gaussian basis sets, and
furthermore that the exponent o is nearly always well
within a factor of 2 either way of the value 5 A~'. At the
first (outermost) search point o is simply taken to have
the generic value 5 A~!, while afterward the density and
its radial derivative at each search point are fit to an
exponential to obtain the associated effective exponent o.
Assuming the actual density to be an exponential with
the exponent « then allows straightforward prediction of
the point along the ray that will have the target density
of p,. Far from the target this prediction may not be
very good, so large jumps are damped by never allowing
the distance from the current point to the next predicted
point to exceed 20% of the distance from the cavity or-
igin. Also, if the effective « is negative and the current
density is less than p,, the prediction is ignored entirely
and the next point is instead taken to be 20% closer to
the cavity origin. These steps are iteratively continued
until the calculated solute electronic density matches the
target contour value, p,, within a given tolerance. This
tolerance has a default value of 107! au, or can be
otherwise specified by the user. The number of such
steps, or iterations, taken to reach the target is capped by
a maximum whose default value is 99. If the number of
steps along any ray exceeds this maximum, the program
is terminated with informational messages about failure
to locate the surface.

A single-center treatment of the isodensity cavity
surface is predicated on the assumption that each ray
extending from the cavity origin outward will intersect
the cavity surface only once. If the solute molecule is
highly nonspherical, the surface may have one or more
pockets that lead to violation of this assumption. To
check for such behavior, a second determination of each
surface point is made, this time working outward from
near the cavity origin. If these two determinations reach
essentially the same point on the ray, the surface point is
accepted as valid. If they do not, this is taken as evidence
that the surface has a pocket that precludes its charac-
terization about this center. In that event, the program is
terminated with appropriate informational messages
about the failure. In some cases of failure, selecting a
different center for the cavity origin may lead to a valid



construction. If the solute is severely nonspherical, a
single-center approach to the isodensity cavity con-
struction may not be possible at all. The user is given an
option to bypass the cavity validity check, but this is not
recommended.

The outward-directed searches carried out for the
single-center validity check can be economized, since
they need to provide only rough estimates of the
surface point locations. Thus, solute densities are here
evaluated only on a series of concentric equally spaced
shells centered at the cavity origin. By default the in-
nermost shell has radius 0.5 A and other shells have
radii increased by 0.5 A increments. These values can
be overridden by the user, in which case they should
be chosen to be small enough to make it unlikely to
miss any pockets in the surface. On a given shell, the
solute electronic density is calculated at all points
where rays intersect the shell. Additional shells are
constructed working outward until all the solute den-
sities on the outermost shell have fallen below the
target value p,. Along each ray, the two innermost
adjacent shells which have solute densities bracketing
the target value are noted. This then provides a rough
estimate of each ray length good to within half the
shell spacing, which is 0.25 A with the default
parameters.

If these searches all succeed, then along each ray we
now have a highly refined value of the ray length ob-
tained from working inward, together with a rough es-
timate of the ray length obtained from working outward.
If these two separate determinations of the ray length
agree to within the expected bracketing error, which is
0.25 A for default outward-going shell spacing, the re-
fined cavity surface point obtained by working inward is
accepted as valid. If they do not agree within the ex-
pected bracketing error, the cavity surface determination
is deemed to have failed. Furthermore, if the effective
radial exponent o at any final refined point turns out to
be negative, failure is declared.

Once the surface grid point locations, t; are all satis-
factorily determined, a separate evaluation is made at
each grid point of the solute density, its analytic first
Cartesian derivatives, and optionally also its analytic
second Cartesian derivatives. For a spherical cavity, the
outward-directed unit normal, n;, to the surface is par-
allel to the ray t; and the surface area associated with
point i is then simply @; = w;t?, where w; is the weight on
the initial unit sphere (see earlier) and # = |t;| is the ray
length. For an isodensity surface, each unit normal
vector to the surface is obtained from the analytic
first Cartesian derivatives as the renormalized negative
density gradient

Vp(t;)

CIVat)]

and the surface area associated with point i is obtained
as

n;, =

a; = Witiz secy; ,

where 7y, is the acute angle between the ray t; and the
normal n;.
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3.3 Evaluation of charge penetration

Enough information is available at this stage to estimate
through direct calculation the amount of solute charge
penetrating outside the cavity, p*'. The simplest ap-
proximation involves fitting the radially decaying density
at each grid point to a single exponential. By “radial” we
mean following along the direction of any given ray t;
from the cavity surface out to infinity. If p; is the solute
density at grid point i and p; is its radial first derivative,
one can take p(r) = f5;exp(—a;r) for all r outside the
cavity and lying in the angular cone associated with t;,
with the two fitting parameters having the values
o; = —pi/p; and f; = p;/ exp(—w;t;). Then assuming this
same single-exponential behavior remains valid every-
where in this cone outside the cavity, the contribution
from this cone to the total penetrating charge is obtained
by analytically evaluating the integral of this exponential
from the cavity surface out to infinity and multiplying by
the angular cone weight factor of w;7. In typical
molecular calculations involving Gaussian basis sets we
found that this two-parameter fit typically leads to about
5-15% accuracy in the final result for pt.

This estimate can usually be improved if analytic
second derivatives of the density are also evaluated at
the surface. We found that an effective three-parameter
fit procedure can be obtained by taking p(r)~
B,[1 + 6;(r — ;)" exp(—a;r) for r outside the cavity and
lying in the angular cone associated with t;, where f§; and
o; are the same as described earlier and J; is obtained by
fitting to the additional information provided by the
radial second derivative of the solute density. This ex-
pression is also easily integrated analytically to obtain its
contribution to the total penetrating charge. In practice,
the three-parameter fit procedure typically leads to
about 1-10% accuracy in the final result for pe.

In the particular case of the SPE method a generally
more accurate indirect calculation of the penetrating
solute charge can be made from knowledge of the
apparent surface charges. The discrete analog of the
appropriate expression [3] is simply

grid

_ _ €
P =p+ (6_ > e

where p is the known total charge of the solute, for
example, zero for a neutral species.

4 Implementation in HONDO

A program based on the previous description has been
written in Fortran for use in the general electronic
structure package HONDO [4], keeping it as much as
possible in a separate self-contained code module called
SVP. This module has four main sections.

An input section, SVPINP, is called only once, at the
initialization stage of the entire molecular calculation. It
reads all input data as keywords in a namelist format,
applies default values for options not specifically de-
clared by the user, and checks for mutual consistency of
input parameters.
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The remaining three main sections are each called in
the self-consistent-field (SCF) determination of the
electronic structure. These calls are essentially identical
in the four SCF parts of HONDO, which respectively
carry out closed-shell Hartree—Fock, open-shell Har-
tree-Fock, closed-shell density functional, and open-
shell density functional calculations. As part of the SCF
initialization, a cavity section, SVPSET, is called to
determine the locations of all grid points and their
associated surface areas on an initial spherical cavity.

The reaction field section, SVPCHG, is called once in
each SCF iteration. If the actual cavity is to be an
isodensity surface, this section first uses the current
solute density to determine the isodensity cavity, starting
from either the given initial sphere or the isodensity
cavity obtained in the previous SCF iteration. In any
case, it then sets up and solves the system matrix equa-
tion to obtain the surface point charges or point dipoles
from the current solute density.

This step of solving the reaction field equation re-
quires evaluation at the cavity surface of the solute
electrostatic potential, v*, or the normal electric field, f*,
or perhaps both depending on the particular reaction
field method selected (Tables 1, 2). The solute potential
and/or field at each surface point is evaluated essentially
exactly by the program. In particular, we emphasize that
no kind of multipole expansion is invoked. We frown on
multipole expansions for this purpose, whether single-
center or multicenter, because such expansions are
convergent only outside the charge density they purport
to represent. One of the major concerns of our reaction
field work is to obtain proper behavior on a cavity
surface that lies within a portion of the solute charge
density, so any use of multipole expansions would be
counterproductive. In any event, it is not computation-
ally demanding to carry out essentially exact calculation
of the solute potential and field on the cavity surface. In
HONDO all necessary integrals for calculation of the
electrostatic potential and field at the cavity points, as
well as for calculation of the potential energy resulting
from the apparent surface charges or surface dipoles, are
based on a general and systematic extension of Rys
quadrature for calculation of one- and two-clectron
integrals over Gaussian basis functions [37, 38, 39, 40].

The Hamiltonian section, SVPHAM, that is called in
each SCF iteration handles the calculation of one-
electron integrals for all pairs of basis functions over the
accumulated surface point charges or point dipoles.
These integrals are simply added to the one-electron
integrals in the Fock matrix that has already been con-
structed for the internal energy of the solute. The pro-
gram then goes on as usual to finish the SCF iteration by
diagonalizing the (now modified) Fock matrix to obtain
improved orbitals and an improved apparent total SCF
energy that then include solvation effects.

The apparent total SCF energy must be corrected to
obtain the proper total free energy. For this purpose we
make use of several expressions given in Ref. [3] for the
total solute—solvent reaction field energy. The most
fundamental expression given there has, for a reaction
field generated by a surface charge density, the discrete
analog
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and for a reaction field generated by a surface dipole

density has the discrete analog
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These are easily evaluated in HONDO [4] by making use
of routines that evaluate basis set integrals over the
potential from a given set of point charges, q, or over the
electric field from a given set of point dipoles, p, and
then accumulating the contributions of these integrals to
the total solute density. For a reaction field generated by
a set of surface charges, an alternative secondary
expression [3] for the total reaction field energy has the
discrete analog

61 =q'v (3)

and for a reaction field generated by a set of surface
dipoles an alternative secondary expression [3] for the
total reaction field energy has the discrete analog

& = —p'f . (4)

The contribution made to each of these expressions by
the nuclear part, p"°(r), of the total solute charge
density, p(r), is easily explicitly evaluated manually,
whence the contribution made by the electronic part,
p(r), can then be obtained by simply subtracting the
nuclear part from the total.!

The total free energy is the internal solute energy plus
half the reaction field energy, since the other half of the
reaction field energy is expended in polarizing the sol-
vent. By incorporating effects of the point charges or
point dipoles in the Fock operator as described earlier,
the apparent total SCF energy at this stage includes the
full electronic contribution to the reaction field energy in
a manner corresponding to fundamental expression of
Eq. (1) or Eq. (2), but includes none of the nuclear
contribution. Thus, to arrive at the proper total free
energy from the apparent total SCF energy, it is neces-
sary to make corrections by subtracting half the reaction
field energy due to p®*(r) and by adding half the reac-
tion field energy due to p™(r), these corrections being
most conveniently evaluated through use of the p(r)
and p""°(r) contributions to the secondary expressions of
Eq. (3) or Eq. (4). The free energy of solvation is just the
total free energy so determined minus the gas-phase
energy of the solute.

The normal and recommended route through the
HONDO program first carries out a gas-phase calcula-
tion and then uses the gas-phase wave function as an
initial guess to carry out a self-consistent reaction field
calculation. With an isodensity cavity, the cavity surface

1By electronic and nuclear contributions to the reaction field
energy, we mean here only those contributions arising from the
explicit dependence of Egs. (1), (2), (3) and (4) on p(r). There is, of
course, also a further implicit dependence on p(r) through its effect
on determining the reaction field point charges q or dipoles p.



is updated each SCF iteration to be fully consistent with
the polarized solute density. Convergence of the reaction
field point charges or point dipoles is monitored by
noting the largest absolute change in any point charge or
point dipole from its value in the previous iteration.
These changes are declared converged when the maxi-
mum change falls below a user-specified value, whose
default is 1 x 1077 au. Final convergence of the SCF
calculation is not declared until both the usual criterion
on the SCF density change and the criterion on the
maximum point charge or point dipole change are each
separately satisfied.

5 Precision of approximate reaction field calculations

It is generally necessary to have a means to know when
the desired level of precision has been reached in a
reaction field calculation. This might be just a modest
precision if only the total energy is desired, or perhaps
a very high precision if energy derivatives are to be
evaluated by finite-difference methods for geometry
optimization or other purposes. In this section, several
performance issues are examined that determine the
precision of reaction field calculations. These matters
include the convergence with the number of grid points,
N, the optimum value of the parameter C; that scales
diagonal elements of the S matrix, and the use of
alternative forms of the system matrix. Evaluation of the
rather different matter of the accuracy of various
approximate reaction field methods is covered in
Ref. [3].

5.1 Representative solutes

Results are given from calculations on several represen-
tative small solutes. Included are the polar neutral
solutes H,O and CH3;CONH,;. The former is roughly
spherical, while the latter has a more complicated shape
and so is more demanding of the surface integration
procedures. The effect of solute charge is considered with
the two isoelectronic solutes NO' and CN™.

All the calculations on the neutral and cationic sol-
utes were carried out with the restricted Hartree—Fock
(RHF) method with the 6-31G** basis set [41] at the
optimum gas-phase RHF/6-31G** geometries. For the
anionic solute, diffuse functions were also included
through use of the 6-31 + G** basis set [42], at the op-
timum gas-phase RHF/6-31 + G** geometry. The cavity
is always defined by an isodensity surface having
po=0.00le/a}, and the dielectric constant is chosen as
78.304 to be representative of water solvent.

With these choices for the computational method, the
amount of solute charge penetrating outside the cavity,
pXt. is found to be 0.06e, 0.16e, 0.07e, and 0.17e for
H,O, CH;CONH,, NO*, and CN~, respectively. Per-
haps a better way to compare these is to normalize to the
total number of solute electrons, whence the values of
P /Neee for the cation and the two neutrals are all
within about 20% of one another, while the value for the
anion is almost twice as large. Another way to compare
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is to normalize instead to the cavity surface areas, which
are 42, 99, 45, and 68 A? for H,O, CH;CONH,, NO*,
and CN~, respectively. On this basis the values of p™!/
area are within 10% of one another for the cation and
two neutrals, and again the value for the anion is almost
twice as large.

The values of p*! given here are strictly valid only for
the SPE method, where quite precise calculation is
possible using the indirect formula noted earlier in-
volving the total surface charge; however, the values
obtained from the direct calculation methods discussed
earlier, whereby p™' is estimated from fitting the solute
charge density and its derivatives at the cavity surface,
indicate that the value of p**! for a given solute varies
only slightly among the various other reaction field
methods considered. As might be expected, the variation
is smallest for the cation and largest for the anion.
Among the approximate surface charge methods the
maximum variation is only 0.00000le for the cation,
only 0.0002¢ for the two neutrals, and only 0.002¢ for
the anion. The maximum variation is larger among the
approximate surface dipole methods, but is still only
0.001e for the cation and only 0.003¢ for the two neu-
trals, while it becomes a more significant 0.04e for the
anion.

5.2 Convergence with number of grid points

A major factor limiting the precision of a reaction field
calculation arises from the discretization error associat-
ed with approximating a continuous surface charge (or
dipole) density distribution with a finite set of surface
charges (or dipoles). This error can be minimized by
increasing the number of surface grid points, and it is
therefore of interest to study convergence with respect to
increasing N.

The SS(V)PE solvation energies of the four solutes
considered are shown in Fig. 1. The horizontal axes are
chosen to be linear in log N simply in order to spread the
points out to assist visualization, and results are included
for all N > 50. The CH;CONH),; results show the largest
variation with N, the H,O results vary somewhat less,
and the NO* and CN~ results, which are very similar to
one another in this respect, show the smallest variation.
Comparing the two neutrals to one another, part of the
larger variation with N of the CH3;CONH,; compared to
the H,O results can be rationalized on the basis of the
former having a little over twice as much surface area as
the latter. Even after taking the size factor into account
the variation with N is still greater with CH3CONH,
than with H,O, indicating that the more complicated
shape of the former also plays a significant role in de-
termining the precision of the result. The two ionic sol-
utes show considerably smaller variation of the solvation
energy with N than do either of the neutral solutes. The
variation is very similar for the two ionic solutes com-
pared to one another, even though CN~ has nearly twice
as much surface area as NO*.

Exceptional behavior of the SS(V)PE results in Fig. 1
can be seen for N values of 146, 170, and especially 350,
in that these results always lie significantly off the
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otherwise smooth curve joining all other nearby results.
Although not obvious on the scale of Fig. 1, examina-
tion on an expanded energy scale shows that the results
for N values of 4802 and 5294 are also slightly, yet dis-
tinctly and consistently, off the otherwise smooth curve
joining all other nearby results. Completely analogous
behavior is also found with the COSMO and IEF
methods, but not with SPE. This suggests that the ex-
ceptional behavior of these five integration sets is
somehow related to their treatment of the S matrix. In
any case, it is recommended that the 146, 170, 350, 4802,
and 5294 Lebedev sets be excluded from any conver-
gence or extrapolation studies when employing the
SS(V)PE, COSMO, or IEF methods, and these excep-
tional sets are omitted from fitting schemes and discus-
sions of trends given later. To emphasize the matter,
these exceptional points are represented by filled-in
circles in all the figures, while all other points use open
circles.

To have a means for extrapolation to obtain the
limiting result corresponding to an infinite number of
grid points, N, we searched for the functional behavior
of the computed solvation energy at large N. In each
case examined we succeeded in finding an apparent
asymptotic power-law dependence of the form
AG®V(N) = Gy, + g, /N" by guessing various values of n
in increments of 0.5 until a plot of AG*°(N) versus 1/N"
gave a straight line for a broad range of large N values.
The intercept of this plot then gives the extrapolated
value of AG*°¥(o0) = G, that corresponds to an essen-
tially exact solution of the given reaction field equation.

It is found that asymptotically the SS(V)PE solvation
energy converges linearly as 1/N?2. This is demonstrated
in Fig. 2, where use of horizontal axes that are linear
in 1/N? allows good straight-line fits to the solvation
energies.

From knowledge of the asymptotic dependence on N
it is possible to extrapolate to obtain estimates of the
limiting results for an infinite number of grid points. The
top two panels in Fig. 2 show results with the neutral
solutes for N > 974, using an energy scale having
increments of 0.001 kcal/mol. Excellent straight-line
fits against 1/N? are obtained there for points having
N > 1202, allowing for extrapolation to obtain the
highly precise limiting values of —8.5795 kcal/mol
for H;O and —10.8157 kcal/mol for CH;CONH,. The
bottom two panels in Fig. 2 show results with the ionic
solutes for N > 146, using an energy scale having
increments of 0.01 kcal/mol. Good straight-line fits
against 1/N? are obtained there for points in the range
194 < N <974, allowing for extrapolation to obtain the
precise limiting values of —89.474 kcal/mol for NO* and
—67.306 kcal/mol for CN™.

The IEF and COSMO methods also show apparent
asymptotic 1/N? dependence, and with nearly the same
coefficient g, as for SS(V)PE; thus, increasing the num-
ber of points by about a factor of 3 generally leads to
about one more digit of precision in the SS(V)PE,
COSMO, and IEF results.

It should be mentioned here that for very large N
values the SS(V)PE, IEF, and COSMO results begin to
deviate from the straight-line fits described earlier, in-
dicating some departure of the convergence rate of the
solvation energies from the apparent asymptotic 1/N?
behavior. The onset of this departure only occurs when
the free energy has converged to about 0.0001 kcal/mol
in the neutral solutes and to about 0.001 kcal/mol in the
ionic solutes. Thus, with H,O this departure is seen but
slightly and only at the largest available value of N, and
with CH3CONH; it is not seen at all; however, for the
ionic solutes NO' and CN~ this departure is seen for all
N =1000. This curious behavior is discussed more in the
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next subsection, where it is suggested that an insuffi-
ciently precise value of the C; parameter is responsible.

The SPE method and the SS(V)PE—u, IEF—u, and
COSMO—u methods each show a slightly weaker as-
ymptotic 1/N!? dependence, but in compensation have
similar coefficients ¢1.5 that, at least for the range of
available N values, are much more favorable than for the
SS(V)PE, IEF, and COSMO surface charge methods.
Thus, to reach a modest energy precision of, say, 0.1
or 0.01 kcal/mol for the small solutes examined here
requires fewer points in SPE, SS(V)PE—u, IEF—u, and
COSMO-u than in SS(V)PE, COSMO, and IEF.

The SPE-u method shows a slightly stronger asymp-
totic 1/N*> dependence at very large N, which appears
to fall back to nearer 1/N? for intermediate values of N.
The coefficient is very similar to that of the surface
charge SS(V)PE, IEF, and COSMO methods.

5.3 Optimum value of Cs parameter

The value of the empirical scaling factor, Cs used to scale
diagonal elements of the S matrix was previously
optimized [12] as 1.104 for use in Lebedev surface
integration, on the basis of numerical studies of model
systems with both a spherical cavity and a nonspherical
cavity. Since the correction factor f(y,) that is also
included here to improve the precision of diagonal
elements of the S matrix was not known at that time, it
seems worthwhile to reexamine this matter when the
f(y) correction factor is included.

The effects of varying C; are shown for SS(V)PE re-
sults in Fig. 3. The middle line in each panel corresponds
to the optimum Cs value of 1.104, while the outermost
lines correspond to values of 1.070 and 1.140 that are
approximately equally spaced below and above the pu-

Fig. 2. SS(V)PE solvation free
energy for representative solutes
as a function of N on axes linear
N in 1/N?

tative optimum value. Examining vertical slices through
these plots shows that for any given value of N the
solvation free energy is essentially a linear function of Cs,
at least over the narrow range of Cs values being con-
sidered.

Interestingly, we find that for Cs being either 1.070 or
1.140 the asymptotic convergence rate of the SS(V)PE
energy deteriorates to a much weaker 1/v/N dependence,
compared to the strong 1/N? dependence established
previously when C; is 1.104. For that reason, the hori-
zontal axes in Fig. 3 are chosen to be linear in 1/ V/N.
This allows straight-line fitting and extrapolation of the
outermost curves to obtain estimates for an infinite
number of grid points, although noting the much cruder
energy scales in Fig. 3 compared to Fig. 2 we should not
expect such high precision as obtained earlier for Cj
being the optimum 1.104. For H,O, NO*, and CN~ the
range of apparent linearity in 1/4/N for C, being either
1.070 or 1.140 allows use of N > 434 in the extrapola-
tion, while for CH3;CONH, only N > 1202 is used.

Extrapolations of the C; = 1.070 and 1.140 results
against 1/v/N predict limiting values of —8.581 kcal/mol
for H,O, —10.817 kcal/mol for CH3;CONH,, —89.473
kcal/mol for NOT, and —67.305 kcal/mol for CN-,
these results being essentially the same for both values of
Cs. These are in good agreement, all within 0.001 kcal/
mol, of the presumably more precise values found pre-
viously from extrapolating the optimum Cs = 1.104 re-
sults against 1/N2. Thus, it is numerically verified that
the extrapolated SS(V)PE solvation free energy for an
infinite number of grid points is independent of the value
of Cs, as it should be.

Very similar results are also obtained with the IEF
and COSMO methods. It is concluded that the value of
C; affects the rate of convergence, but not the converged
value, of SS(V)PE, IEF, and COSMO calculations. It is
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also concluded that the optimum value of C; for best
convergence is close to 1.104.

The performance found here when C; differs from its
optimum value may explain the curious behavior noted
in the previous subsection. Recall from there that when
using the near-optimum value of 1.104 for C with the
two ionic solutes, an asymptotic convergence rate of
1/N? is found over a broad range of large N values up to
about 1000. For still larger N, where the energy varies
less than about 0.001 kcal/mol, the linearity in 1/N?
fails, indicating a falloff of the apparent convergence
rate. In light of the behavior found in this subsection,
where the convergence rate is seen to drop from 1/N? to
1/ VN when C, does not have its optimum value, this
curious behavior may be explained by the optimum
value of about 1.104 for Cs not being precise enough to
fully support the favorable 1/N? rate when N gets very
large.

At this point Cy is strictly an empirical correction
factor. We surmise that if a theoretical approach could
be found to reveal the true nature of this parameter,
this might provide a more precise value for Cs that
would support the 1/N? convergence rate of SS(V)PE,
COSMO, and IEF results to very high N values.
Furthermore, it might well also suggest an improved
formulation for diagonal elements of the S matrix that
would further accelerate the convergence.

5.4 Alternative forms of the system matrix

Some of the reaction field methods are shown to have
several alternative expressions for the system matrix in
Tables 1 and 2. For example, the SS(V)PE system matrix
given in the main body of Table 1 is symmetric, while

energy for representative solutes
with different values of Cs as a
function of N on axes linear in

N 1/V/N

200 500 2000 oo

the three alternative forms (corresponding to the form
given for IEF and to the two factorized forms given in
the footnote) are each nonsymmetric. Owing to discret-
ization errors, these four alternative expressions may
lead to slightly different results in practice.

SS(V)PE calculations with these alternative expres-
sions show that the symmetric form of the system matrix
invariably leads to results about midway between those
from the two nonsymmetric factorizable forms. The
nonsymmetric IEF form also produces results between
the limits of the two nonsymmetric factorizable forms,
lying closest to the last listed version of the latter.
However, the numerical energy differences between
all four alternative forms of the system matrix are gen-
erally small. It is most appropriate to compare these
differences to the inherent discretization error, which is
the difference between the energy at a given value of N
and the extrapolated energy corresponding to infinite N.
The differences obtained from alternative forms of the
system matrix are greatest at small values of NV, but even
there are at most only about 10% of the discretization
error, and at larger N the differences become a still
smaller fraction of the discretization error. An inde-
pendent study [11] has also found only small differences
in calculations using alternative forms of the system
matrix. It is therefore concluded that distinction of the
results from these alternative forms of the system matrix
is not very significant in practice.

6 Summary and conclusion
Details were given for practical boundary element

solutions of the formal equations defining various
approximate reaction field methods by discretization



over the surface to allow use of finite matrix methods.
Choices of surface grids were discussed, and consider-
able detail was given on practical construction of
an isodensity cavity surface based on a single-center
treatment. A computer program was described to carry
out such reaction field calculations, as implemented in
the standard HONDO [4] electronic structure code.

For large number of surface points, N, the asymptotic
convergence to reach the limiting value was found in each
approximate reaction field method considered to vary as
gn/N". The SS(V)PE, IEF, and COSMO methods each
converge with n=2 and with very similar values of the
coefficient g,. The SPE, SS(V)PE—u, COSMO-u, and
IEF—u methods each converge with a slightly weaker
n = 1.5 dependence and with very similar values of the
coefficient g; s. The SPE—u method appears to converge
with n = 2.5. Despite the less favorable n = 1.5 depen-
dence in the SPE, SS(V)PE—u, IEF—u, and COSMO—u
methods, the coefficient g; 5 is so small that convergence
in an absolute sense to say 0.1 or 0.01 kcal/molis reached
in small solutes with a smaller number of points than
with the SS(V)PE, IEF, and COSMO methods.

The optimum value of the empirical factor, Cs, scal-
ing diagonal elements of the S matrix involved in several
of the methods was investigated numerically. It was
found that for Lebedev integration schemes the opti-
mum value of Cs is equal to or very near the previously
determined value of 1.104, even when a new shape fac-
tor, f(y;), derived here to improve precision is included.

The SS(V)PE and IEF methods each have a system
matrix that can be written in several alternative forms
that lead to slightly different results owing to discreti-
zation error on a finite grid. Numerical studies indicate
that the differences between these forms are small in
practice, generally being less than about 10% of the in-
herent discretization error for small N values and a still
smaller fraction of the discretization error for larger N
values.

Future work on the reaction field program described
here is planned in several directions. Concerning the
cavity itself, additional definitions of the surface will be
incorporated, and the surface integration schemes will be
improved to better treat solutes having highly irregular
shapes. Concerning the reaction field, inertial and opti-
cal responses will be separated to allow determination of
vertical excitation energies, and a capability to treat
ionic strength effects will be developed.
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Appendix

Here we outline the derivation of our formula for
diagonal elements, Sj;, of the matrix representation S of
the integral operator .. The surface grid point i lies at a
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distance # from the expansion center, and y; is the acute
angle between the ray t; and the surface normal n;. This
point is representative of some small neighborhood of
surface points {t}.

With Lebedev surface integration the actual shape of
this neighborhood is not specified, so we begin by
making a reasonable construction. The notation is con-
siderably simplified, and no generality is lost, if the grid
point i under consideration is taken to lic at the north
pole of a spherical polar coordinate axis system, in
which 6 measures the angle between the ray t and the
z-axis. We assume a simple construction whereby the
shape of this neighborhood is dictated by where a cone
of solid angle having 0 < 0 < 0, and 0 < ¢ < 27 inter-
sects with the actual cavity surface. The value of the
upper limit, 0;, will be determined through consideration
of the surface area of the segment, which is defined
through

2n 0;

_ 2
ai—o/dqﬁo/dﬂt(@, ¢) sinBOsecy (0, ¢) .

Any point t in this neighborhood will have a distance
from the expansion center that is close to that of
the representative point, i.e., #(0, ¢) ~ ¢;. Similarly, the
normal angle at any point in this neighborhood will be
close to the normal angle at the representative point,
i.e., (0, ) =~ y,. Since 0; is expected to be small, we can
make the expansions

10, ¢) = 1 +u($)0 + 0(6")]
sec (0, §) = secy;[1 + v(¢)0 + O(0%)] .

A short derivation shows that
u(¢) = tany;sin(¢ + ¢y) -

Our final result will turn out to be independent of the
phase shift angle, ¢,, so it need not be explicitly
evaluated; in fact it can be made to vanish by proper
orientation of the x-axis of the coordinate system. The
quantity v(¢) need not be explicitly evaluated either; it is
sufficient for the present purposes to note that, like u(¢),
it is a sinusoidal function of period 27, so its integral
vanishes over the full period 0 < ¢ < 2.

Using these expansions, we easily find that the area of
the segment under consideration is @; = nf? sec ;07 +
@(6?). Equating this with the expression a; = w;t? secy;
that was previously given in the main body of this work
for the same area, where w; is the corresponding weight
on the initial unit sphere, shows that +/w;/m=
0; + ©(0?), which can be turned around to provide a
good estimate for the value of 0; that determines the size
of the segment.

Now we can consider the corresponding S matrix
diagonal element, which is defined by

2n 0;

o 1(0, ¢)* sin 0 sec (0, ¢)
S,,_/d¢0/d0 r—y

0

By introducing the expansions used earlier and noting
that
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0

we
Sii
wh

Sii

1
dp ———— = 4K (sin’ y,),/CO5 }; ,
1+ u?(¢) ( )
obtain
= 4K(sin2 ;)t:0; + @(9?) ,
ich leads to the final result

2
= <)K(sin2 77/ 4na; cos y; + 0(0?)
T

that is used in the main body of this work. Note that the
explicitly evaluated first term on the RHS of the last
equation is linear in 6; and that the first correction term

in
of

0? vanishes, making the leading nonzero correction
0(0?). Approximation using only the explicitly

evaluated term on the RHS should therefore be robust

for

small 0;.
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